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ABSTRACT: 
A large block of QuickBird Basic Imagery has been analyzed for optimal control distribution and scene ties. This has 
been done by three dimensional adjustment a block of Basic Imagery using satellite ephemeredes and attitude 
(quaternion) data along with ground control points (GCPs). Different GCPs configuration and check points were used 
to assess the achieved accuracy. Alternative a transformation to a plane with constant height followed by a two 
dimensional block adjustment was used for a small block of IKONOS images. Only the horizontal coordinates of the 
ground control points and check points have been available, so the SRTM – height model was used for the third 
dimension.  
 
1. INTRODUCTION 
 
Digital Orthophotos is the most commonly and widely 
used mapping product in these days. The processes 
involved for its generation have been conveniently 
automated to a large degree what makes it to a very 
economical attractive alternative to the traditional line 
mapping. It has nearly the metric characteristics of 
maps plus the unreduced pictorial information 
contents. The time consuming interpretation of vector 
mapping is not required. In other words, the 
cartographic symbols are replaced by the image of the 
same features without any generalization. 
Modern high resolution satellite images (i.e., 
IKONOS, QuickBird, OrbView-3) provides 
simultaneous panchromatic and multispectral image 
acquisition and almost progressive continuous orbit 
coverage, allowing a large area coverage in minimum 
time. A permanent platform rotation allows the line 
exposures to be made parallel with the x-axis of 
cartographic systems simplifying the automation on 
the production of the orthomosaics. 
The achieved accuracy in an orthophoto depends 
mainly on the accuracy of the orientation parameters 
of the used imagery and on the accuracy of the digital 
elevation model (DEM). On the other hand the 
accuracy of the orientation depends on the used 
mathematical model, the accuracy, number and 
distribution of GCPs. The number and required 
distribution of GCPs is determined by the used 
mathematical model and the sensor. The present 
investigation concentrates on the study of the 
orientation accuracy using mainly two orientation 
methods and different number and distribution of 
GCPs. For that purpose a blocks of high resolution 
panchromatic QuickBird images was used. It is 
composed of 40 images from 6 contiguous orbits. 
GCPs were manually transferred from higher 
resolution, accurate stereoscopic oriented 
panchromatic aerial photos. The orientation accuracy 
of the aerial photos relative to check points shall be in 

the range of 1.0 m. Figure 2 shows the block along 
with the GCPs distribution 
In relation to the used orientation models, two were 
employed, namely the space resection based on the 
satellite ephemeries and the attitude quaternions, and a 
second method that transforms the images to a plane 
with constant height followed by a two dimensional 
block adjustment based on combined shift or up to 6 
affine parameters. The first method is implemented in 
BAE SYSTEMS Socet Set (MST) and the second was 
derived at the University of Hannover. The first part of 
observations were made using the Socet Set Systems 
through its module multisensor triangulation (MST), 
almost progressive continuous orbit coverage, 
allowing in such way large area coverage in minimum 
time while for the second part the Hannover program 
DPLX was used.  
 
2.  ORIENTATION MODELS 
 
The bundle model is based on the widely known co-
linearity condition equation of CCD-lines. The 
exterior orientation parameters of each CCD-line are 
different, but the relation of the exterior orientation to 
the satellite orbit is only changing slightly. Hence for 
the classical CCD-line cameras, the attitudes are not 
changing in relation to the satellite orbit. So for an 
image it is possible to consider time (space) dependent 
attitude parameters. Taking into consideration the 
general information about the view direction of the 
satellite, the “in track and across track view angles” 
(included within the QuickBird *.imd-file) and 
knowing that in a basic imagery the effects of the high 
frequency movements have been eliminated, then the 
effects of the low frequence motions of the platform 
can be modeled by self calibration via additional 
parameters. 
The additional parameters been used by the Hannover 
orientation program BLASPO are checked for 
numerical stability, statistical significance and 



reliability in order to justify their presence and to 
avoid over-parameterization. The program 
automatically reduces the parameters specified by 
dialogue to the required group by a statistical analysis 
based on a combination of Student-test, the correlation 
and total correlation. This guarantees that not over-
parameterization occurs. In that case an extrapolation 
outside the area covered by control points does not 
become dangerous. 
 
2.1 Bundle Orientation using ephemeries and 
      Attitude Quaternion 
The camera sensor model distributed by DigitalGlobe 
contains five coordinates systems, namely:  
earth coordinates (EC), spacecraft coordinates (SC), 
camera coordinates (CC), detector coordinates (DC) 
and image coordinates (IC). Definitions and details 
regarding these systems can be found in DigitalGlobe 
QuickBird Imagery Product Guide. 
The data contained in the ephemeris file are sample 
mean and covariance estimates of the position of the 
spacecraft system relative to the earth centered fixed 
(ECF) system. These files are produced for a 
continuous image period, e.g., an image or strip. The 
attitude file contains sample mean and covariance 
estimates of the attitude space craft system relative to 
the ECF system. These files are produced for a 
continuous imaging period, e.g., a snap or strip, and 
span the period for at least four seconds before the 
start of imaging and after the end of imaging. The 
instantaneous spacecraft attitude is represented by 
four-element quaternion. It describes a hypothetical 
3D rotation of the spacecraft frame with respect to the 
ECF frame. Any such a 3D rotation can be expressed 
by a rotation angle, θ and an axis of rotation given by 
unit vector components (ξx, ξy, ξz) in the ECF frame. 
The sign and rotation angle follows the right-hand 
rule. Finally the quaternion (q1, q2, q3, q4) is related 
to θ and (ξx, ξy, ξz) by: 
 
 q1 = ξx sin(θ/2) 
 q2 = ξy sin(θ/2) 
 q3 = ξz sin(θ/2)…..(1) 
 q4 = cos(θ/2) 
 
The image lines in the Basic Imagery product are 
sampled at a constant rate. This means that the 
imaging time can be computed directly from the given 
data avgLineRate (Average Line Rate) and 
firstLineTime (First Line Time) with no 
approximations: 
 
 
 t=r/ avgLineRate + firstLineTime    (2) 
 
One point on the imaging ray is the perspective center 
of the virtual camera at time t. The coordinates of the 
perspective center in the spacecraft coordinate system 
are constant and given data. In matrix notation: 
 
 CS = (CX, CY, CZ)T…. (3) 
 

where CX, CY and CZ are values of the camera 
calibration file (*.geo File). It is possible to locate the 
origin of the spacecraft coordinate system in the ECF 
system at a time t by interpolating the position time 
series in the ephemeris file. Let us call this position 
SE(t). Likewise, we can find the attitude of the 
spacecraft coordinate system at a time (t) in the ECF 
system by interpolating the quaternion time series in 
the attitude file. This quaternion, qS

E(t), represents the 
rotation from the ECF system to the spacecraft body 
system at time t. Then using quaternion algebra, the 
position of the perspective center at time t in the ECF 
coordinate system is: 
 
 CE(t) = (qE

S(t))-1 CS qE
S(t) + SE(t),  or 

 
 CE(t) = qS

E(t) CS (qS
E(t))-1 + SE(t) ..(4) 

 
Alternatively, computing RE

S(t), the rotation matrix 
from the given quaternions qS

E(t)  for time (t) as a 
rotation from the spacecraft body to the ECF, then (4) 
above can be expressed by: 
 
 CE(t) = RE

S(t) CS + SE(t)   ...(5) 
 
Expressions (4) and (5) are the position of the 
projection center at the instant (t) expressed in the 
ECF coordinate system that may corresponds to a 
position of a GCP in the image. In this way it can be 
replaced in the colinarity equation above for the 
position (line j) that corresponds to a time (t). 
For any column and row measurement (c, r) of a pixel 
in the image, the corresponding position of the image 
point in the detector coordinate system (relative to the 
center of the lowest numbered pixel in the detector) is: 
 
XD = 0 
YD = -c*detPitch,  
with detPitch being the distance (in mm) between 
centers of adjacent pixels in the array 
 
To convert these detector coordinates to camera 
coordinates, it is necessary to apply the rotation and 
translation given by the following equations: 
XC = cos(detRotAngle)* XD - sin(detRotAngle)* YD +  
         detOriginX 
XC = sin(detRotAngle)* XD + cos(detRotAngle)* YD  
         + detOriginY …. ……….(7) 
ZD = C (Virtual Principal Distance) 
rotation from the spacecraft body to the ECF, then (5) 
above can be expressed by: 
 
 CE(t) = RE

S(t) CS + SE(t)   ...(6) 
 
Expressions (5) and (6) are the position of the 
projection center at the instant (t) expressed in the 
ECF coordinate system that may corresponds to a 
position of a GCP in the image. In this way it can be 
replaced in expressions (1) above for the position (line 
j) that corresponds to a time (t). 
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For any column and row measurement (c, r) of a pixel 
in the image, the corresponding position of the image 
point in the detector coordinate system (relative to the 
center of the lowest numbered pixel in the detector) is: 
 
XD = 0 
YD = -c*detPitch,  
with detPitch being the distance (in mm) between 
centers of adjacent pixels in the array 
 
To convert these detector coordinates to camera 
coordinates, it is necessary to apply the rotation and 
translation given by the following equations: 
XC = cos(detRotAngle)* XD - sin(detRotAngle)* YD +  
         detOriginX 
XC = sin(detRotAngle)* XD + cos(detRotAngle)* YD  
         + detOriginY …. ……….(6) 
ZD = C (Virtual Principal Distance) 
 
in the linear detector array, in the camera coordinates 
system, in mm. detRotAngle, detOriginX and 
detOriginY are included in the calibration data file 
(*.geo). 
 
As Basic Imagery do not have lens distortion, the 
corrected image point is identical to the measured 
image point, hence: 
 XC’ = XC  
 YC’ = YC  (7) 
 ZC’ = ZC 
 
The unit vector wC that is parallel to the external ray in 
the camera coordinate system is just the position of 
(XC’, YC’, ZC’) relative to the perspective center at (0, 
0, 0), normalized by its length. In matrix notation, this 
vector is: 
 
WC = (XC’, YC’, ZC’)T and  wC = WC / || WC || (8) 
 
It is possible to convert this vector at first to the 
spacecraft coordinate system and then to the ECF 
system. The unit quaternion for the attitude of the 
camera coordinate system, i.e., the quaternion for the 
rotation of spacecraft frame into the camera frame qC

S, 
is in the geometric calibration file (*.geo). Then, using 
quaternion algebra 
wE = qE

S(t)-1qS
C

-1 wC qS
C qE

S(t)      or 
wE = qS E(t) qC

S  wC (qS
E (t) qC

S)-1  
         or using matrix algebra, 
wE = RE

S(t) RS
C wC ………………(9) 

 
The resulting multiplication matrix RE

C(t) has form 
(10) with: 

ω: constant term, being a function of both scalars qE
S 

(4)  and qS
C (4) 

a(t); b(t); c(t): Are elements of the instantaneous rotation 
matrix [RE

C(t)]T also function of the quaternions qE
S(t) 

for the  instant (t) and qC
S. equation (10) can in this 

way be used in the bundle orientation. 
The program system Multi Sensor Triangulation 
(MST) of BAE SYSTEMS’s SOCET SET uses this 
approach for QuickBird Imagery. 
 
2.2. Transformation to a Plane with Constant 
Height followed by a two Dimensional Block 
Adjustment 
 
The three-dimensional adjustment requires a 
sufficient number of control points, leading to a 
combined resection or a sufficient image overlap 
enabling the spatial connection like in the case of 
a standard aerial triangulation. This overlap 
usually not exists, requiring a reduction of the 
three-dimensional case to a two-dimensional 
solution, corresponding to the classical Anblock 
triangulation. If no images transformed to a 
plane with constant height (like QuickBird OR-
Standard or IKONOS Geo) are given, such a 
product should be generated based on the 
existing sensor orientation. It can be made with 
rational polynomial coefficients (RPCs) 
(Grodecki 2001) or using the image geometry 
described before. A simple transformation to a 
plane with constant height is leading to errors in 
the horizontal location caused by the height 
difference of the actual point against the average 
height.  

νtan•∆= hDL          (11) 
error in location caused by ∆h and incidence 
angle ν 

 
It requires the "terrain relief correction". If no 
height of the required tie and control point is 
given, this has to be interpolated from a DEM. 
With nearly global coverage the SRTM C-band 
DEM can be used for images with limited  
incidence angle. Its standard deviation for the 
height in open and flat areas of approximately 
4m (Jacobsen 2005) is causing in the average 
discrepancies below 1m if the incidence angle is 
not exceeding 14°. The interpolation within the 



DEM requires the correct location which is not 
given in advance, so an iteration is required 
(approximate location  approximate height  
better location  better height  . . .). If the tie 
and control points are not located in a position 
with remarkable terrain inclination, the iterative 
height interpolation can be based on the direct 
sensor orientation of the satellite. Only if such 
locations cannot be avoided, the iteration has to 
include also the position improvement by 
combined transformation to the control points. 
The iterative terrain relief correction can be 
based on a geometric reconstruction or RPCs 
(Büyüksalih, Jacobsen 2005). 
 

Fig. 1: basic principle of Anblock adjustment 
   small square = control point 
   circle = tie point 
 
Figure 1 shows the basic principle of an Anblock 
adjustment – the two-dimensional images are 
connected by tie points and together they are 
related to some control points. The classical 
Anblock adjustment is based on a combined 
affine transformation, for each photo the 6 affine 
parameters have to be adjusted. 6 unknowns for 
each photo require a sufficient control point 
distribution. So it leads to numerical problems if 
the control point shown in the center of figure 1 
is not available. On the other hand it has to be 
analyzed if really 6 unknowns are necessary for 
the matching of projected space images. In 
Büyüksalih, Jacobsen 2005 it has been shown, 6 
parameters are required for a sub-pixel accuracy 
of QuickBird images while IKONOS images 
could be oriented with just shift parameters. By 
this reason such a combined orientation of a 
block of space photos has to be flexible with the 
number of used unknowns and like usually 
required, the significance and correlation of 
unknowns has to be checked. 
 
 

3. Experimental Test 
 
3.1. Block Adjustment using Ephemeredes 
and Attitude Quaternion 
 
 

 
Fig. 2a :Full control distribution 
 

 
Fig. 2b:  Perimeter control and randomly distributed 
GCPs in the center of the block 
 
Figure 2 shows the foot print of the block of 
QuickBird images along with the location and 
distribution of the GCPs. The maximum number (case 
A) of used GCPs (89) in the experiments is shown in 
Figure 2a. Also adjustments with reduced numbers of 
GCPs were tested. For the study, this correspond to the 



case B (perimeter control and randomly distributed 
GCPs in the center of the Block, Fig 2b), case C 
(perimeter control only), case D (relaxed perimeter 
control) and case E (GCPs only in the block corners). 
On each case (other than in case A), the remaining 
GCPs were used as a check points. The mayor 
inconveniences for the realization of the project 
represented the identification and transferring of the 
GCPs and check points. First of all the area of interest 
is mountainous and jungle with a huge and dense 
canopy typical of an equatorial area. Considerably 
time difference (3 years) between the reference aerial 
images and the recently acquired QuickBird scenes 
made it difficult to extract corresponding details. 
Illumination, seasonal differences, and image 
inclination imposed worse challenges to the operation. 
 
Case GCP SX SY check 

points 
RMSEx 
 

RMSEy

A 89 0.52 0.53 - - - 
B 33 0.45 0.44 56 1.77 2.59 
C 25 0.35 0.35 64 1.94 2.72 
D 9 0.33 0.34 80 3.42 4.21 
E 5 0.24 0.26 84 5.27 6.93 

Table 1: achieved results - use of different numbers of 
control points 

    SX,SY = MSE discrepancies at control points 
    RMSEx, y = discrepancies at check points 
 
From Table 1 and 2 one clearly notice that with a 
reduced number of control points there is a better 
fitting of the block to the control but the absolute 
accuracy of the block identified at independent check 
points deteriorates very quickly reaching non tolerable 
values  for control only in the block corners (Case E). 
 
Case GCP DX 

max 
DY 
max 

check 
points 

DX 
max 

DY 
max 

A 89 2.51 -2.1 - - - 
B 33 1.22 -1.42 56 -4.7 7.2 
C 25 1.12 1.12 64 5.6 8.3 
D 9 1.12 0.92 80 8.8 -16.8 
E 5 0.53 0.59 84 16.9 -20.4 

Table 2: maximal discrepancies at control (left) and 
check points (right) based on different numbers of 
control points 
 
Case GCP SX SY ∆Xmax ∆Ymax

A 89 0.21 0.25 -2.53 -4.93 
B 33 0.19 0.23 2.51 -4.56 
C 25 0.16 0.22 2.48 -1.50 
D 9 0.16 0.21 2.45 -1.48 
E 5 0.15 0.20 2.06 -1.35 

Table 3: internal accuracy at tie points 
 
Table 3 shows the behavior of the block in terms of 
achieved internal accuracy based on statistics on its tie 
points. It shows a better internal relative fitting 
between contiguous images for more relaxed control. 
This is shown in the SX and SY and on the maximal 
residuals. Nevertheless, the reached maximal errors, 

especially for the full controlled block suggest the 
presence of not yet detected gross errors among the 
image observations (i.e., in tie and/or transferred 
GCPs). 
 
 
3.2. Two Dimensional Block Adjustment 
The two-dimensional block adjustment could not 
be finished up to the dead line, but a smaller 
block of 4 IKONOS images has been handled.  
For the tie points, height values are required for a 
two-dimensional block adjustment. Only the 
SRTM C-band DEM has been available, having 
an accuracy in the range of 4m for flat and open 
terrain (Jacobsen 2005), but the area is 
mountainous and mainly covered by forest. So 
for tie points located in small clear cuts, the 
height value of the top of the trees has been 
interpolated and larger vertical discrepancies can 
be expected. The used IKONOS scenes do have 
incidence angles up to 26°. The tangent of the 
incidence multiplied with the 4m accuracy leads 
to 1.6m, which has to be doubled because of 
opposite view directions of overlapping scenes.  
Enough control points have been available for 
the orientation of the individual scenes based on 
rational polynomial coefficients and only a shift 
in X and Y for the bias correction. This resulted 
in the average in root mean square discrepancies 
at the control points (6 points in the average) of 
+/-1.21m for X and +/-2.79m for Y. The quite 
higher discrepancies in the Y-direction can be 
explained by the influence of the point heights. 
The point identification has an accuracy of 0.5 
pixels = 0.5 m. 
The determination of the tie point height requires 
an iteration. At first a simple affinity 
transformation of the pixel coordinates to control 
points was leading to rough ground coordinates – 
used for the interpolation of the height values. 
With these height values improved ground 
coordinates have been computed by rational 
polynomial coefficients – used again for the 
interpolation. For a nadir angle of 26° 4 to 5 
iterations are required. The resulting ground 
coordinates of the tie points have been used for a 
block adjustment. The good internal accuracy of 
IKONOS-images required only a shift of the 
scenes in X and Y, a higher number of unknowns 
did not lead to improved results. 
The internal accuracy of the block computation 
can be checked by the comparison of 
overlapping scenes, the results can be seen in 
figure 3a up to 3d and in table 4. 
 



 
Fig. 3a  discrepancies at tie points of 2 
overlapping terrain relief corrected  IKONOS-
scenes 
 

  
 

Fig. 3b and 3c  discrepancies at tie points of 2 
overlapping terrain relief corrected  IKONOS-
scenes 
 
The transformation of overlapping scenes to each 
other shows larger discrepancies than the block 
adjustment itself, caused by the view from opposite 
direction enlarging the influence of the limited height 
accuracy of the used DEM. The coordinate component 
across the base direction (y-parallax) is independent 
upon the point height and this is limited in the root 
mean square average to 0.89m; that means to sub-pixel 
accuracy. Reverse this can be used for the estimation 
of the vertical accuracy respecting the individual 
height to base relation of the scene combinations – 
leading to a root mean square vertical accuracy of 
6.2m. Under the condition of a mountainous terrain 
and the influence of neighbored forest this is a 
satisfying result for the SRTM C-band DEM, but it is 
not sufficient for the accuracy potential of the very 
high resolution space images. Under given condition, 

the nadir angle should not exceed 10° to limit the 
influence of the used DEM to 1m or 1 pixel. 

 
Fig. 3d  discrepancies at tie points of 2 
overlapping terrain relief corrected  IKONOS-
scenes 
 

RMSX RMSY RMSbase RMSacross 
1.28m 4.95m 5.05m 0.95m 
1.82m 2.95m 3.40m 0.65m 
2.48m 1.23m 2.50m 1.18m 
1.32m 5.70m 5.82m 0.67m 

Table 4: internal accuracy of IKONOS block – 
comparison of overlapping scenes 
 
 
CONCLUSION 
A three-dimensional adjustment of a block of space 
images having only limited overlap is not leading to a 
real reduction of the number of required control points 
like shown with the problems of the reduced number 
of control points. The block adjustment should be 
done only in the X- and Y-plane after terrain relief 
correction. For the terrain relief correction a sufficient 
DEM is required. At the small block of IKONOS-
scenes the influence of the limited vertical accuracy 
became obvious especially because of the larger nadir 
angles. If the nadir angles do not exceed 10°, the 
SRTM C-band DEM can be used for reaching 
satisfying results. 
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